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Summary

Major histocompatibility complex class II (MHC-II) molecules are

expressed on the surface of professional antigen-presenting cells where

they display peptides to T helper cells, which orchestrate the onset and

outcome of many host immune responses. Understanding which peptides

will be presented by the MHC-II molecule is therefore important for

understanding the activation of T helper cells and can be used to identify

T-cell epitopes. We here present updated versions of two MHC–II–peptide
binding affinity prediction methods, NetMHCII and NetMHCIIpan. These

were constructed using an extended data set of quantitative MHC–peptide
binding affinity data obtained from the Immune Epitope Database cover-

ing HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show

that training with this extended data set improved the performance for

peptide binding predictions for both methods. Both methods are publicly

available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/se

rvices/NetMHCIIpan-3.2.

Keywords: affinity predictions; immunogenic peptides; MHC binding

specificity; peptide–MHC binding; T-cell epitope.

Introduction

Major histocompatibility complex class II (MHC-II)

molecules are found on the surface of antigen-presenting

cells where they present peptides derived from extracellu-

lar proteins to T helper cells.1 Many peptide–MHC com-

plexes are presented on the surface of antigen-presenting

cells, but only peptides recognized by T-cell receptors will

trigger an immune response, and are referred to as T-cell

epitopes. Identifying T-cell epitopes is important for the

general understanding of cellular immunity and the

design of peptide-based diagnostics, therapeutics and vac-

cines.2 The MHC-II molecule is a heterodimeric glyco-

protein that consists of an a-chain and a b-chain. In

humans, these two chains are encoded in the human leu-

cocyte antigen (HLA) gene complex in one of three loci

called HLA-DR, -DP and -DQ.3 In mice, the MHC-II

chains are encoded in the histocompatibility 2 (H-2)

locus. Each locus is comprised of many different allelic

variants, which makes the MHC-II molecule highly

Abbreviations: AUC, area under the receiver operating characteristics curve; H-2, histocompatibility 2; HLA, human leucocyte
antigen; IEDB, Immune Epitope Database; LOMO, leave-one-molecule-out; MHC-II, MHC class II; MHC-I, MHC class I; MHC,
major histocompatibility complex; PFR, peptide flanking regions; UPGMA, unweighted pair group method with arithmetic mean

ª 2018 John Wiley & Sons Ltd, Immunology, 154, 394–406394

IMMUNOLOGY OR IG INAL ART ICLE

http://orcid.org/0000-0001-9217-7142
http://orcid.org/0000-0001-9217-7142
http://orcid.org/0000-0001-9217-7142
http://orcid.org/0000-0002-8036-2647
http://orcid.org/0000-0002-8036-2647
http://orcid.org/0000-0002-8036-2647
https://orcid.org/0000-0001-7885-4311
https://orcid.org/0000-0001-7885-4311
https://orcid.org/0000-0001-7885-4311
http://www.cbs.dtu.dk/services/NetMHCII-2.3
http://www.cbs.dtu.dk/services/NetMHCIIpan-3.2
http://www.cbs.dtu.dk/services/NetMHCIIpan-3.2


polymorphic.4 Peptides presented by the MHC-II mole-

cule bind to a binding groove formed by residues of the

MHC a- and the b-chains. The peptide binding groove is

open at both ends and therefore allows binding of pep-

tides with different lengths.5 Even though the MHC-II

molecule can accommodate peptides of variable lengths

the most abundant peptides found in nature are between

13 and 25 residues long.6 The part of the peptide ligand

that primarily interacts with the MHC binding groove is

called the peptide binding core and is usually nine amino

acids long7 with anchor residues at positions P1, P4, P6

and P9.8 The peptide–MHC binding affinity is primarily

determined by the amino acid sequence of the peptide

binding core. However, it has been shown that peptide

flanking regions (PFRs) on either side of the binding core

affect peptide–MHC binding and, thereby ultimately also

influence the peptide immunogenicity.7,9

There are therefore many factors that make it difficult to

predict peptide binding affinities to MHC-II molecules,

including the polymorphic nature of MHC-II molecules,

the variations in peptide length, the influence of the PFRs

and the identification of the correct peptide binding core.

All these factors complicate the task of predicting peptide

binding affinities to MHC-II molecules; most methods

therefore still have a low performance compared with

MHC class I (MHC-I) peptide binding prediction methods.

Earlier work has demonstrated that the prediction perfor-

mance of both NetMHCII and NetMHCIIpan is dependent

on the amount of peptide binding data10,11 and one would

therefore expect the two methods to improve in perfor-

mance if retrained on an extended peptide binding data set.

We have here investigated if this is indeed the case.

Identifying T-cell epitopes is difficult because of the large

diversity in potentially binding peptides. However, as pep-

tide-MHC binding is a prerequisite for T-cell immuno-

genicity, multiple studies have shown that there is a strong

correlation between MHC peptide binding strength and

peptide immunogenicity.12–14 It is therefore desirable to

have accurate and reliable peptide binding affinity predic-

tion methods that can be used for in silico screening pep-

tides with the purpose of identifying T-cell epitopes that

match MHC-II molecules in a given host. Given this, many

different methods have been developed, including NetMH-

CII,15 NetMHCIIpan,16 TEPITOPE,17 TEPITOPEpan,18

PROPRED,19 RANKPEP20,21 and SVRMHC.22 Both

NetMHCII15 and NetMHCIIpan16 have been shown to be

among the best methods for predicting binding affinities to

MHC-II molecules.2,8,23 These two methods are trained

using the NNAlign framework15,24,25 and are based on

ensembles of artificial neural networks that are trained on

quantitative peptide binding affinity data from the Immune

Epitope Database (IEDB).26 One of the main differences

between NetMHCII and NetMHCIIpan is that NetMHCII

is a collection of individual networks for each MHC mole-

cule whereas NetMHCIIpan contains a single universal

network that can predict peptide binding affinities for all

MHC molecules of known protein sequence.

NetMHCII and NetMHCIIpan predict peptide binding

affinities to MHC-II molecules covering HLA-DR, HLA-

DQ, HLA-DP and H-2 mouse molecules. The main dif-

ference between the two methods is that NetMHCII only

predicts peptide binding affinities to MHC molecules for

which it has been trained, whereas NetMCHIIpan can

predict peptide binding affinities to any MHC molecule

with a known protein sequence. As mentioned above

there is a strong correlation between MHC binding

strength and peptide immunogenicity and the two meth-

ods have been used extensively as a guide to identify T-

cell epitopes that can be used in the design of peptide-

based diagnostics, therapeutics and vaccines.

In this paper, we present updated versions of our bind-

ing affinity prediction methods, NetMHCII and NetMH-

CIIpan, trained on an extended data set of > 100 000

quantitative peptide binding measurements from IEDB,26

covering 36 HLA-DR, 27 HLA-DQ, 9 HLA-DP, as well as

8 mouse MHC-II molecules. We then evaluate the perfor-

mance of these new versions using a set of large-scale

benchmarks to investigate how the extended data set

improves the predictive performance of the two methods.

Materials and methods

Data sets

The data set used to generate the new versions of

NetMHCII and NetMHCIIpan contains peptide–MHC II

binding affinities retrieved from the IEDB (www.iedb.org)

in 2016. All data points are experimental IC50 binding

values, which were log-transformed to fall in the range

between 0 and 1 using the relation 1�log(IC50 nM)/log

(50 000) as explained by Nielsen et al.27. The 2016 data

set contains 134 281 data points, covering 36 HLA-DR,

27 HLA-DQ, 9 HLA-DP and 8 H-2 molecules. The data

set was split into five groups by clustering the common

motif of peptides as described by Nielsen et al.28 and

these five groups were used for a five-fold cross-valida-

tion. This 2016 data set is publicly available at www.cbs.d

tu.dk/suppl/immunology/NetMHCIIpan-3.2. The data set

used to develop the previous versions of NetMHCII and

NetMHCIIpan is available at www.cbs.dtu.dk/suppl/im

munology/NetMHCIIpan-3.0.

A summary of the data included in the 2013 and 2016

data sets is shown in Table 1 and a description of the full

2016 data set is available in the Supplementary material

(Table S1).

Network training

The NetMHCII method was implemented as described by

Nielsen and Lund15 and the NetMHCIIpan method was
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implemented as described by Andreatta et al.16 NetMHCII

is an allele-specific method that contains a specific predic-

tor for each MHC molecule in the data set and it can there-

fore only predict binding affinities for MHC molecules

found in the training data, whereas NetMHCIIpan is a

pan-specific method that can make predictions for any

MHC molecule with a known protein sequence. To achieve

its pan-specificity, NetMHCIIpan incorporates information

about the MHC-II molecule, using a pseudo sequence con-

sisting of residues that are considered important for pep-

tide binding. This pseudo sequence is constructed using the

method described by Karosiene et al.11 and is composed of

34 residues: 15 from the a-chain and 19 from the b-chain.
Both methods were trained using a five-fold cross-valida-

tion set-up. For each fold, we generate a network ensemble

of individual networks trained without early stopping for

500 cycles with 10, 15, 40 and 60 hidden neurons using 10

different initial configurations, generating a total of 40 net-

works. This was done for each of the five training/test set

combinations leading to a total of 200 networks. The pep-

tide and the MHC pseudo sequence were encoded using

the BLOSUM50 matrix and the PFR was encoded using the

average BLOSUM scores on a maximum window of three

amino acids at either end of the binding core.29 For each

peptide core, the input to the neural network therefore

consisted of the peptide core (9 9 20 = 180 inputs), the

PFRs (2 9 20 = 40 inputs), the peptide length (2 inputs),

the length of the C-terminal and N-terminal PFRs

(2 9 2 = 4 inputs), resulting in a total of 226 input values

for NetMHCII and 906 for NetMHCIIpan (an additional

34 9 20 = 680 input values from the pseudo sequence).

Binding core predictions

To improve the binding core predictions, we include the

offset correction step to both NetMHCII and NetMHCII-

pan. We followed the procedure described by Andreatta

et al.16 and we evaluated the performance of this offset

correction using the benchmark data set of 51 crystal

structures of peptide–MHC-II complexes.

Performance measures

The predictive performance of the different methods was

measured using the area under the receiver operating

characteristics curve (AUC). To classify peptides into bin-

ders and non-binders, a binding threshold of 500 nM was

used, classifying all peptides with an IC50 binding value

< 500 nM as binders. All performance values shown in

this paper are averages of the AUC performance per

MHC molecule using only molecules with more than 20

peptides and at least four binders.

Leave-one-molecule-out network training

To assess the predictive performance of NetMHCIIpan in

the situation where a molecule is not part of the training

data, a leave-one-molecule-out (LOMO) approach was

applied.

To estimate LOMO performance for MHC molecule X,

the NetMHCIIpan networks were trained using the five-

fold cross-validation set-up from above. In the LOMO

cross-validation set-up all binding data from molecule X

were removed from the training sets and all test sets only

include binding data from molecule X. This set-up

ensures that the method is trained without peptides bind-

ing to molecule X and it can therefore be used to evaluate

the ability of the method to predict peptide binding of

uncharacterized MHC-II molecules.

Nearest neighbour distance calculation

The nearest neighbour distance is estimated from the

alignment score of the HLA pseudo sequences using the

relation d ¼ ðsðA,BÞÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðA,AÞ � sðB,BÞp� �

. In this equa-

tion s(A,B) is the BLOSUM50 alignment score between

the pseudo sequences for MHC molecules A and B,

respectively.29 Nearest neighbours are found from the

subset of molecules characterized with at least 50 data

points and at least 10 binders.

Sequence logos

Sequence logos were constructed from the predicted

binding cores of the top 1% strongest predicted binders

using 200 000 natural random 15-mer peptides and was

visualized using SEQ2LOGO30 with default settings.

Generation of HLA-II distance trees

The HLA-II distance tree was generated for each of the

HLA-DR, -DQ and -DP molecules in our data set using

MHCCLUSTER.31 To make the tree we first predicted the

binding affinity for 200 000 natural random 15-mer pep-

tides using the new version of NetMHCIIpan. We then

used MHCCLUSTER to find the functional similarity

between any two MHC molecules. MHCCLUSTER calcu-

lates the similarity between two MHC molecules by corre-

lating the union of the predicted top 10% strongest

binding peptides. Using the bootstrap method in

Table 1. Description of the two MHC class II peptide binding data

sets

Data set 2013 Data set 2016

# Data points 52062 134281

Type of alleles 24 HLA-DR 36 HLA-DR

6 HLA-DQ 27 HLA-DQ

5 HLA-DP 9 HLA-DP

2 H-2 8 H-2
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MHCCLUSTER we generated 100 distance matrices and

converted these to distance trees using the unweighted

pair group method with arithmetic mean clustering.

These trees were then combined into a consensus tree

and visualized in SPLITSTREE.32 Sequence logos were con-

structed as explained above.

T-cell epitope benchmark

A set of MHC-II restricted T-cell epitopes identified by

multimer/tetramer staining assays was downloaded from

IEDB. Only fully typed restrictions were included; that is,

fully typed a- and b-chains for HLA-DQ and HLA-DP,

and a fully typed b-chain for HLA-DR (where the a-chain
is invariant). Epitopes with non-natural amino acids were

excluded. Also, epitopes with identical match to the pep-

tides in the training data were excluded. The source pro-

tein sequence for each epitope was identified by mapping

the annotated IEDB protein ID to the NCBI protein data-

base. The final validation data set consisted of 1698 epi-

topes, restricted to 33 distinct MHC-II molecules. For

performance evaluation, the epitope source protein was

split into overlapping peptides of the length of the epi-

tope, and AUC and Frank values were calculated for each

epitope–MHC pair annotating the epitopes as positive

and all others as negatives. Here, Frank is the ratio of the

number of peptides with a prediction score higher than

the positive peptide to the number of peptides contained

within the source protein. Hence, the Frank value is 0 if

the positive peptide has the highest prediction value of all

peptides within the source protein and a value of 0�5 in

cases in which an equal number of peptides has a higher

and lower prediction value compared with the positive

peptide.

Results

Comparing NetMHCII and NetMHCIIpan on a
shared evaluation set

Using the data set from 2016, we retrained NetMHCII15

and NetMHCIIpan11 using a five-fold cross-validation

setup to generate two new versions of these methods,

named NetMHCII-2.3 and NetMHCIIpan-3.2. We then

investigated how these new versions performed compared

with the previous versions, which are NetMHCII-2.2 and

NetMHCIIpan-3.1, trained on the 2013 data set. To make

the comparison, we used the same fivefold cross-valida-

tion set-up and compared peptide data points in com-

mon between the 2013 and 2016 data sets. The result

from this analysis in shown in Table 2.

The new versions of NetMHCII and NetMHCIIpan

improved performance compared with the older versions

(Table 2); but the performance gain was not statistically

significant (P > 0�1 in both cases). Another interesting

point is that the allele-specific NetMHCII-2.3 obtained a

higher average performance than the pan-specific

NetMHCIIpan-3.2, but this effect will be discussed later.

Performance of NetMHCIIpan on new data points for
common MHC molecules

Using the five-fold cross-validation setup, we then evalu-

ated the performance of the two versions of NetMHCII

and NetMHCIIpan using only the subset of new peptides

for the MHC molecules common between the old and

new data sets. The result of this analysis is shown in

Table 3 and it demonstrates a significant gain in predic-

tive performance of the new versions (NetMHCII,

P < 0�001 and NetMHCIIpan, P < 0�0003, using paired

t-test). This result underlines the importance of expand-

ing the size of the training data even for previously

characterized MHC molecules. [Correction added on 02

April 2018, after first online publication: In the preceding

sentence, P < 0�005 and P < 0�001 was corrected to

P < 0�001 and P < 0�0003 respectively.]

Binding core predictions

We evaluated the accuracy for binding core identification

of the two updated MHC-II binding prediction methods

on the data set of peptide–MHC crystal structures

described by Andreatta et al.16 Overall we find that (i)

the inclusion of the offset correction has a substantial

impact on the accuracy of binding core identification for

both methods, and (ii) the overall accuracy of both meth-

ods is improved compared with the earlier version. For

details see the Supplementary material (Table S2).

Performance of a consensus method

For predicting binding affinities to MHC-I, it has been

shown that a simple combination of the predictions from

NetMHC27 and NetMHCpan10 gives a higher perfor-

mance than using each method individually.33 We there-

fore made a similar combination of the predictions from

NetMHCII-2.3 and NetMHCIIpan-3.2 to investigate if the

performance could be improved for MHC-II using this

consensus approach. In the consensus method, we use an

average of the prediction scores (values between 0 and 1)

from NetMHCII-2.3 and NetMHCIIpan-3.2 to define the

consensus method. The result of this analysis is shown in

Fig. 1 and detailed performance values are found in the

Supplementary material (Table S3). Figure 1(a) shows

that the combination of NetMHCII-2.3 and NetMCHII-

pan-3.2 has a significantly improved performance com-

pared with each individual method and Fig. 1(b) shows

that NetMHCIIpan-3.2 outperforms NetMHCII-2.3, espe-

cially for MHC molecules where only a few peptides are

found in the data set.
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Performance of NetMHCIIpan for previously
uncharacterized MHC molecules

For NetMHCIIpan, we also tested the performance on

MHC molecules that were not part of the 2013 data set

(see Table 4). As expected, we observed that the new ver-

sion of NetMHCIIpan had a significant increase in the

predictive performance when compared with the previous

version of NetMHCIIpan (P = 3�6 9 10�5, using a paired

t-test); this result therefore demonstrates the importance

of expanding the allotypic coverage of the training data.

Leave-one-molecule-out performance

The pan-specific method is capable of making predictions

for uncharacterized MHC molecules, so to assess the pre-

dictive performance of the NetMHCIIpan method in these

situations we conducted a LOMO experiment. In the

LOMO, the binding data for the MHC molecule in ques-

tion were excluded from training and the resulting model

was then evaluated using only binding data for the MHC

molecule in question (for details see the Materials and

methods). The LOMO experiment was made for all MHC

molecules shared between the 2013 and the 2016 data sets,

and the performance was evaluated on peptides shared

between the two data sets. The result of this LOMO

benchmark is shown in Table 5, together with the pseudo

distances of the MHC molecule to each of the two train-

ing data sets estimated from the nearest neighbour

sequence similarity as described in Materials and methods.

Table 5 shows an increased performance for NetMHCII-

pan-3.2-LOMO compared with netMHCIIpan-3.1-LOMO.

This gain is in general most pronounced for the MHC mole-

cules that share a decrease in the pseudo sequence distance.

To further investigate this last observation, the LOMO

performance evaluation was extended to include all MHC

molecules in the 2016 data set. The result from this anal-

ysis is shown in Fig. 2 with a scatterplot of the relation-

ship between the distance to the nearest neighbour in the

training data set and the LOMO performance. The com-

plete data used to create Fig. 2 can be found in Table S4.

The figure shows that the HLA-DQ and the HLA-DP

molecules have close nearest neighbours whereas the

HLA-DR and H-2 molecules tend to have more distant

Table 2. Comparing predictions from the old and the new versions of NetMHCII and NetMHCIIpan trained using a fivefold cross-validation on

the set of data points common between the two data sets

Molecule #Peptides #Binders NetMHCII-2.2 NetMHCII-2.3 NetMHCIIpan-3.1 NetMHCIIpan-3.2

DRB1_0101 2754 2635 0�817 0�822 0�828 0�830
DRB1_0301 1403 379 0�832 0�826 0�829 0�835
DRB1_0401 1639 695 0�801 0�791 0�804 0�798
DRB1_0404 542 331 0�783 0�768 0�813 0�810
DRB1_0405 1438 595 0�862 0�860 0�852 0�844
DRB1_0701 1619 806 0�858 0�857 0�852 0�857
DRB1_0802 1310 400 0�757 0�767 0�753 0�749
DRB1_0901 841 560 0�746 0�761 0�777 0�779
DRB1_1101 1604 730 0�876 0�876 0�875 0�876
DRB1_1302 1351 463 0�811 0�823 0�801 0�810
DRB1_1501 1601 672 0�818 0�820 0�817 0�831
DRB3_0101 1266 267 0�835 0�846 0�835 0�824
DRB4_0101 1329 467 0�840 0�841 0�832 0�817
DRB5_0101 1606 765 0�852 0�847 0�855 0�846
H-2-IAb 525 125 0�850 0�857 0�849 0�868
H-2-IAd 100 24 0�718 0�809 0�734 0�808
HLA-DPA10103-DPB10401 1075 458 0�957 0�960 0�956 0�961
HLA-DPA10201-DPB10101 1180 558 0�949 0�949 0�949 0�948
HLA-DPA10201-DPB10501 1114 415 0�957 0�954 0�949 0�948
HLA-DPA10301-DPB10402 1193 498 0�958 0�957 0�957 0�952
HLA-DQA10101-DQB10501 990 246 0�856 0�890 0�834 0�857
HLA-DQA10102-DQB10602 1121 503 0�838 0�901 0�877 0�887
HLA-DQA10301-DQB10302 1461 330 0�824 0�820 0�796 0�774
HLA-DQA10401-DQB10402 1436 516 0�919 0�923 0�915 0�903
HLA-DQA10501-DQB10201 1386 477 0�898 0�901 0�886 0�883
HLA-DQA10501-DQB10301 1274 530 0�893 0�873 0�881 0�860
Average 0�856 0�863 0�856 0�858

For each MHC molecule, we show the total number of peptides, the number of binders, the AUC performance. The different methods included

are the NetMHCII and NetMHCIIpan methods training on the original 2013 data set (versions 2.2 and 3.1), and the versions of the two methods

trained on the extended 2016 data set (versions 2.3 and 3.2). The highest performance for NetMHCII and NetMHCIIpan is highlighted in bold.
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neighbours. This figure also demonstrates a weak but sta-

tistically significant (P = 0�04 with exact permutation

test) correlation between the LOMO performance and the

distance to the nearest neighbour in the training data.

This is in agreement with earlier findings for both MHC-

I and MHC-II molecules10,11 and shows how the predic-

tive performance of the pan-specific method depends on

the distance to the nearest neighbour.

Distance tree for HLA molecules

Having arrived at the final retrained versions of NetMH-

CIIpan, we next use the MHCCLUSTER method31 to evalu-

ate the similarities of binding motifs between the HLA

molecules included in the 2016 training data. In short,

the MHCCLUSTER method estimates the similarity between

two MHC molecules using the correlation between pre-

dicted binding values for a large set of random natural

peptides. The similarity is 1 if the two molecules have a

perfect binding specificity overlap and �1 if the two

molecules share no specificity overlap (for details see

Materials and methods). Comparing the binding pattern

similarity between any two HLA class II molecules in the

2016 training data, we constructed the distance tree

shown in Fig. 3. This figure confirms the earlier findings

by Karosiene et al.:11 (i) the different loci show limited

overlap in binding preference, (ii) HLA-DP is less diverse

compared with HLA-DQ and HLA-DR, and (iii) the

diversity of HLA-DQ can largely be split into three

groups; one with preference for negatively charged amino

acids towards the C-terminus, one with a preference for

positively charged amino acids towards the C-terminus,

and one with a preference for small amino acids at the

anchor positions.

T-cell epitope benchmark

We next evaluated the predictive performance of the two

NetMHCIIpan methods on an IEDB T-cell epitope data

set. We queried the IEDB for MHC-II-restricted epitopes

Table 3. Comparing predictions from the old (versions 2.2 and 3.1), and the new version (versions 2.3 and 3.2), of NetMHCII and NetMHCpan

using the fivefold cross-validation setup and evaluating on the subset of new peptides using only MHC molecules shared between the 2013 and

2016 data sets

Allele #Peptides #Binders NetMHCII-2.2 NetMHCII-2.3 NetMHCIIpan-3.1 NetMHCIIpan-3.2

DRB1_0101 7658 3741 0�850 0�815 0�836 0�823
DRB1_0301 3949 1078 0�799 0�813 0�779 0�812
DRB1_0401 4678 2327 0�771 0�798 0�770 0�811
DRB1_0404 3115 1521 0�710 0�788 0�761 0�810
DRB1_0405 2524 1059 0�798 0�828 0�809 0�817
DRB1_0701 4706 2650 0�822 0�882 0�825 0�880
DRB1_0802 3155 1636 0�797 0�845 0�825 0�853
DRB1_0901 3477 1604 0�842 0�844 0�833 0�840
DRB1_1101 4441 1937 0�826 0�865 0�820 0�862
DRB1_1302 3126 1786 0�853 0�907 0�860 0�907
DRB1_1501 3249 1435 0�806 0�840 0�817 0�836
DRB3_0101 3367 1148 0�898 0�913 0�898 0�906
DRB4_0101 2632 1073 0�796 0�834 0�804 0�822
DRB5_0101 3519 1665 0�836 0�851 0�841 0�851
H-2-IAb 1268 306 0�936 0�894 0�919 0�902
H-2-Iad 674 297 0�762 0�819 0�799 0�820
HLA-DPA10103-DPB10201 782 140 0�968 0�909 0�954 0�916
HLA-DPA10103-DPB10401 1650 328 0�887 0�900 0�885 0�898
HLA-DPA10201-DPB10101 1267 301 0�819 0�830 0�828 0�845
HLA-DPA10201-DPB10501 1356 298 0�849 0�858 0�817 0�858
HLA-DPA10301-DPB10402 1448 423 0�839 0�840 0�841 0�844
HLA-DQA10101-DQB10501 1956 569 0�930 0�930 0�922 0�920
HLA-DQA10102-DQB10602 1626 753 0�856 0�913 0�880 0�902
HLA-DQA10301-DQB10302 1650 238 0�850 0�868 0�838 0�832
HLA-DQA10401-DQB10402 1454 412 0�781 0�858 0�781 0�857
HLA-DQA10501-DQB10201 1511 397 0�831 0�874 0�833 0�871
HLA-DQA10501-DQB10301 2311 1282 0�909 0�944 0�921 0�943
Average 0�838 0�861 0�841 0�861

For each MHC molecule, we show the total number of peptides, the number of binders and the AUC performance for the different versions.

Highlighted in bold is the highest performance between the two NetMHCII and NetMHCIIpan methods.

[Correction added on 02 April 2018, after first online publication: Table 3 has been updated in this version.]
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identified by tetramer/multi-mer staining, which is the

reference standard for epitope identification with known

MHC restriction. For each epitope–MHC-II pair, we cal-

culated AUC and Frank values for the two NetMHCIIpan

methods by predicting binding affinities to the MHC-II

restriction element of the epitope for all overlapping pep-

tides with the same length as the epitope in the source

protein sequence, annotating the epitope as positive and

the remaining peptides as negative. This annotation is

very stringent because peptides that share the same ligand

binding-core are counted as negatives even though they

could be presented by the human MHC molecule; the

set-up will therefore most likely underestimate the predic-

tive performance. The details from this analysis are found

in Table S5 and the results are summarized in Fig. 4.

The Frank value is 0 if the positive peptide has the

highest prediction value of all peptides within the source

protein, and a value of 0�5 in cases where an equal

number of peptides has a higher and lower prediction

value compared with the positive peptide. Figure 4(a)

shows that the Frank score for NetMHCIIpan-3.1 is sig-

nificantly lower than NetMHCIIpan-3.1. It further shows

that NetMHCIIpan-3.2 has a median < 0�2 indicating

that the positive peptide was found among the top 20%

of the peptides from the source protein if sorted on

their predicted peptide binding affinity. Figure 4(b)

demonstrates a significant improvement in the AUC per-

formance of NetMHCIIpan-3.2 compared with NetMH-

CIIpan-3.1. We speculate that the gain in predictive

performance of NetMHCIIpan-3.2 could be attributed to

at least two factors, the inclusion of binding data for

additional MHC-II molecules in the training data, and

the expansion of the number of data points for MHC-II

molecules already included in the old training data. Fig-

ure 4(c,d) quantifies that both of these factors indeed

contribute to the performance gain. Figure 4(c) shows

the performance gain as a function of the change in dis-

tance of the query molecule to the nearest neighbour of

the training data. From this plot, we see that the gain

in predictive performance is related to a decrease in the

nearest neighbour distance, and hence directly related to

the inclusion of binding data for additional MHC-II

molecules in the new data set. Figure 4(d) shows the

performance gain as a function of the change in the

number of data points between the two data sets used

for training. We here only include molecules shared

between the two data sets used for training NetMHCII-

pan-3.1 and NetMHCIIpan-3.2, as we in the previous

analysis demonstrated how the distance to the nearest

neighbour influences the performance. Figure 4(d) shows

that the gain in performance is correlated to change in

the number of data points for the given MHC mole-

cules. This indicates that the performance gain of the

new NetMHCIIpan version is also driven by the increase

in the number of data points for molecules already

included in the 2013 data set. The one data point in

Figure 4(c,d) with increased nearest neighbour distance

and decreased number of data points corresponds to the

HLA-DPA10103-DPB10201 molecule for which faulty

data were removed in the 2016 data set.
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Figure 1. Performance of NetMHCII-2.3 and NetMHCIIpan-3.2 together with the combination method. (a) The average performance per MHC

molecule of NetMHCII-2.3, NetMHCIIpan-3.2 and the combination method, including the significance between the methods. P-values where

found using a paired t-test using the predictions per molecule found in Table S3 (see the Supplementary material). (b) The average predictive perfor-

mance of the MHC molecules in the data set as a function of the number of peptides. [Colour figure can be viewed at wileyonlinelibrary.com]
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Discussion

The genomic region encoding the MHC-II molecule is

extremely polymorphic comprising several thousand alle-

les and it is therefore difficult to produce enough experi-

mental data to characterize the peptide binding

preference for all existing MHC-II molecules. Because of

this, most MHC-II molecules are still only represented

with very few or no binding data, limiting the coverage

and performance of previous binding affinity prediction

methods. We have therefore updated our two binding

affinity prediction methods, NetMHCII and NetMHCII-

pan using updated and extended data sets. For several

large-scale benchmarks, this improved the predictive

performance for both methods.

Comparing NetMHCII and NetMHCIIpan

Using the data points shared by the old and updated data

sets, we first compared the different versions of NetMH-

CII and NetMHCIIpan. We showed how the new versions

of the methods outperformed the previous versions for

both NetMHCII and NetMHCIIpan. We then evaluated

the performance of the two versions of the methods using

only ‘new’ peptides, for the MHC molecules covered both

by the old and the updated data sets. The result of this

Table 4. Comparing predictions from the old and the new version of NetMHCIIpan using the fivefold cross-validation setup on the set of MHC

molecules found in the 2016 data set but not in the 2013 data set

Molecule #Peptides #Binders NetMHCIIpan-3.1 NetMHCIIpan-3.2

DRB1_0103 42 4 0�664 0�678
DRB1_0402 53 19 0�680 0�701
DRB1_0403 59 14 0�767 0�841
DRB1_0801 937 390 0�839 0�844
DRB1_1001 2066 1521 0�907 0�923
DRB1_1104 27 5 0�682 0�791
DRB1_1301 1034 520 0�727 0�857
DRB1_1502 23 7 0�688 0�652
DRB1_1602 1699 989 0�827 0�883
DRB3_0202 3334 1055 0�789 0�869
DRB4_0103 846 525 0�786 0�841
H-2-IAk 115 4 0�426 0�635
H-2-IAs 190 48 0�438 0�825
H-2-IAu 56 22 0�790 0�765
H-2-IEd 245 28 0�623 0�754
H-2-IEk 68 40 0�881 0�853
HLA-DPA10103-DPB10301 1563 575 0�588 0�902
HLA-DPA10103-DPB10402 45 9 0�815 0�710
HLA-DPA10103-DPB10601 584 282 0�996 0�995
HLA-DPA10201-DPB11401 2302 849 0�696 0�930
HLA-DQA10102-DQB10501 833 458 0�606 0�839
HLA-DQA10102-DQB10502 800 158 0�825 0�835
HLA-DQA10103-DQB10603 462 90 0�802 0�861
HLA-DQA10104-DQB10503 883 105 0�787 0�805
HLA-DQA10201-DQB10202 944 119 0�779 0�814
HLA-DQA10201-DQB10301 827 374 0�813 0�849
HLA-DQA10201-DQB10303 761 265 0�743 0�894
HLA-DQA10201-DQB10402 768 241 0�529 0�860
HLA-DQA10301-DQB10301 207 66 0�822 0�839
HLA-DQA10303-DQB10402 567 117 0�483 0�820
HLA-DQA10501-DQB10302 847 203 0�772 0�822
HLA-DQA10501-DQB10303 564 179 0�809 0�876
HLA-DQA10501-DQB10402 749 337 0�584 0�868
HLA-DQA10601-DQB10402 565 133 0�498 0�848
Average 0�719 0�826

For each molecule, we show the total number of peptides, the number of binders and the AUC performance for the two NetMHCIIpan versions.

In bold is highlighted the highest performance of the two versions 3.1 and 3.2 of NetMHCIIpan. Highlighted in bold is the highest performance

between the two methods.

ª 2018 John Wiley & Sons Ltd, Immunology, 154, 394–406 401
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analysis showed that both methods on this data set

gained a significant improvement in the predictive perfor-

mance, supporting the importance of expanding the size

of the training data even for MHC molecules already

characterized by binding data. When evaluating new pep-

tides one has to keep in mind that MHC binding predic-

tors are often used to select peptides for experimental

validation and new data sets may be less diverse than his-

toric data sets generated sampling the entire space of a

given set of protein sequences.34

The main difference between NetMHCII and NetMH-

CIIpan is that NetMHCII is an allele-specific method

trained separately for each MHC molecule, whereas

NetMHCIIpan is a pan-specific method that contains a

single ensemble of networks using information from all

MHC molecules in the data set. We would therefore

expect that the allele-specific method outperforms the

pan-specific method for MHC molecules where sufficient

data are available to accurately characterize the binding

motif, and we would expect the pan-specific method to

outperform the allele-specific method when data are scar-

cer. This is exactly what we observed when we compared

the predictive performances of NetMHCII-2.3 and

NetMHCpan-3.2. Earlier work has shown a similar result,

namely that when allele-specific neural network predic-

tion algorithms rely on a sufficient number of peptide

binders to achieve high predictive performances.33,35 This

illustrates how the allele-specific method is preferable

only if a large amount of data is available for the MHC

molecule in question, but highlights the strength of the

pan-specific methods, which can benefit from the data of

related MHC molecules to make reliable predictions for

MHC molecules with limited data. Because of this differ-

ence between the allele-specific and pan-specific methods,

we implemented a simple combination of two methods

as this has been shown to improve the predictive

Table 5. Comparing LOMO predictions from the old and the new method on the set of data points common between the two data sets

Allele #Peptides #Binders

NetMHCIIpan-3.1-LOMO NetMHCIIpan-3.2-LOMO

AUC Pseudo distance 2013 AUC Pseudo distance 2016

DRB1_0101 2754 2635 0�742 0�22 0�768 0�16
DRB1_0301 1403 379 0�727 0�11 0�736 0�14
DRB1_0401 1639 695 0�761 0�04 0�768 0�04
DRB1_0404 542 331 0�775 0�06 0�774 0�03
DRB1_0405 1438 595 0�825 0�04 0�817 0�04
DRB1_0701 1619 806 0�821 0�28 0�821 0�27
DRB1_0802 1310 400 0�676 0�03 0�701 0�03
DRB1_0901 841 560 0�709 0�25 0�730 0�25
DRB1_1101 1604 730 0�713 0�06 0�772 0�06
DRB1_1302 1351 463 0�652 0�06 0�663 0�05
DRB1_1501 1601 672 0�721 0�20 0�790 0�13
DRB3_0101 1266 267 0�690 0�12 0�700 0�14
DRB4_0101 1329 467 0�747 0�27 0�718 0�00
DRB5_0101 1606 765 0�802 0�20 0�800 0�20
H-2-IAb 525 125 0�698 0�34 0�725 0�34
H-2-IAd 100 24 0�793 0�34 0�805 0�34
HLA-DPA10103-DPB10201 5 1 1�000 0�06 1�000 0�06
HLA-DPA10103-DPB10401 1075 458 0�945 0�06 0�953 0�06
HLA-DPA10201-DPB10101 1180 558 0�938 0�07 0�933 0�07
HLA-DPA10201-DPB10501 1114 415 0�935 0�07 0�939 0�07
HLA-DPA10301-DPB10402 1193 498 0�934 0�09 0�938 0�11
HLA-DQA10101-DQB10501 990 246 0�742 0�23 0�681 0�02
HLA-DQA10102-DQB10602 1121 503 0�570 0�23 0�809 0�07
HLA-DQA10301-DQB10302 1461 330 0�635 0�19 0�623 0�09
HLA-DQA10401-DQB10402 1436 516 0�880 0�26 0�703 0�02
HLA-DQA10501-DQB10201 1386 477 0�555 0�27 0�767 0�07
HLA-DQA10501-DQB10301 1274 530 0�451 0�19 0�648 0�06
Average 0�757 0�781

For each molecule, we show the number of peptides, the number of binders, the AUC performance for the old (3.1) and new (3.2) methods, and

the distance to the nearest neighbor for the old and new data set. Nearest neighbors are found from the subset of molecules in the training data

characterized with at least 50 data points and at least 10 binders. Highlighted in bold is the highest performance between the two methods.

[Correction added on 02 April 2018, after first online publication: Table 5 has been updated in this version.]
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performance for MHC-I molecules.33 This analysis

showed that NetMHCIIpan-3.2 outperforms NetMHCII-

2.3 for MHC molecules, which has been trained with very

few peptides, but that a combination of the predictions

from the two MHC-II methods still outperformed each

individual method.

Leave-one-molecule-out performance for
NetMHCIIpan

One of the main powers of the NetMHCIIpan method is

that it can predict binding affinities for uncharacterized

MHC molecules. To assess the performance of the

method in such a task, we constructed a LOMO experi-

ment where we tested the performance of the NetMHCII-

pan method for predicting binding affinity for MHC

molecules not included in the training data for the

method. From this analysis, we could show that the pan-

specific method is capable of prediction binding affinity

for MHC molecules where no binding affinity data are

available and further demonstrate that the predictive per-

formance is dependent on the distance to the nearest

neighbour. This last observation indicated that the predic-

tive performance of the NetMHCIIpan method could be

further improved by including more uncharacterized

MHC molecules into the training data and it is therefore

important to generate experimental peptide binding affin-

ity data points in a targeted fashion for MHC molecules

not yet characterized.
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Figure 3. Distance tree for all HLA molecules found in our data set generated using the MHCCLUSTER method. Sequence logos shows the motif

of the predicted binding core for each HLA and were generated using Seq2Logo.30 [Colour figure can be viewed at wileyonlinelibrary.com]
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Distance tree for HLA class II molecules

To understand the different groups of HLA class II mole-

cules, we generated a fictional distance tree using

NetMHCIIpan-3.2. The groups shown in this distance

tree can be used to understand how peptides interact with

different MHC molecules and can be used to discriminate

between binders and non-binders. The distance tree can

also be used to identify T-cell epitopes with similar prop-

erties important for the design of epitope-based vaccines.

Another aspect that can be observed for the tree is that

most MHC molecules have strong anchor positions at P1,

P4, P6 and P9, which have also been observed in previous

studies.8
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Figure 4. Performance of NetMHCIIpan-3.1 and NetMHCIIpan-3.2 using the T-cell epitope benchmark set. (a) The average Frank performance

per MHC molecule for the two versions of NetMHCIIpan. (b) The average AUC performance per MHC molecule for the two versions of

NetMHCIIpan. (c) The change in the distance to the nearest neighbour between the two data sets used for training the old and the new versions

of NetMHCIIpan as a function of the change in distance to the nearest neighbour. (d) the change in the number of data points between the two

data sets used for training NetMHCIIpan-3.1 and NetMHCIIpan-3.2 as a function of the change in the performance, including only MHC mole-

cules where the pseudo sequence did not change between two data sets. The dashed line in the two scatterplots represents the least square fit for

the data.
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T-cell epitope benchmark

Accurate predictions of peptide binding affinities to MHC

molecules are important for understanding the cell-

mediated immune response and for generating better

screening methods for cost-effective identification of

immunogenic peptides. We therefore wanted to test the

predictive performance of the two versions of NetMHCII-

pan on a T-cell epitope data set, and doing this we

demonstrated how the new version of NetMHCIIpan

obtained a significantly improved predictive performance

compared with the earlier version. Two main factors

explain this performance gain: (i) including data for new

MHC-II molecules decreases the distance to the nearest

neighbour, (ii) including an increased number of data

points allows the method better characterizing the speci-

ficity of a given MHC-II molecule.

In conclusion, we believe that NetMHCII and

NetMHCIIpan can be used to improve MHC-II binding

predictions and reduce experimental costs for immunol-

ogists working within the field of epitope-based vaccine

design, and to improve our knowledge about the pep-

tide–MHC interaction, a key event in the cellular

immune response.
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